\(\int (g x)^m (d^2-e^2 x^2)^p \, dx\) [309]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [F]
   Fricas [F]
   Sympy [C] (verification not implemented)
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 20, antiderivative size = 75 \[ \int (g x)^m \left (d^2-e^2 x^2\right )^p \, dx=\frac {(g x)^{1+m} \left (d^2-e^2 x^2\right )^p \left (1-\frac {e^2 x^2}{d^2}\right )^{-p} \operatorname {Hypergeometric2F1}\left (\frac {1+m}{2},-p,\frac {3+m}{2},\frac {e^2 x^2}{d^2}\right )}{g (1+m)} \]

[Out]

(g*x)^(1+m)*(-e^2*x^2+d^2)^p*hypergeom([-p, 1/2+1/2*m],[3/2+1/2*m],e^2*x^2/d^2)/g/(1+m)/((1-e^2*x^2/d^2)^p)

Rubi [A] (verified)

Time = 0.02 (sec) , antiderivative size = 75, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {372, 371} \[ \int (g x)^m \left (d^2-e^2 x^2\right )^p \, dx=\frac {(g x)^{m+1} \left (d^2-e^2 x^2\right )^p \left (1-\frac {e^2 x^2}{d^2}\right )^{-p} \operatorname {Hypergeometric2F1}\left (\frac {m+1}{2},-p,\frac {m+3}{2},\frac {e^2 x^2}{d^2}\right )}{g (m+1)} \]

[In]

Int[(g*x)^m*(d^2 - e^2*x^2)^p,x]

[Out]

((g*x)^(1 + m)*(d^2 - e^2*x^2)^p*Hypergeometric2F1[(1 + m)/2, -p, (3 + m)/2, (e^2*x^2)/d^2])/(g*(1 + m)*(1 - (
e^2*x^2)/d^2)^p)

Rule 371

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[a^p*((c*x)^(m + 1)/(c*(m + 1)))*Hyperg
eometric2F1[-p, (m + 1)/n, (m + 1)/n + 1, (-b)*(x^n/a)], x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] &&
 (ILtQ[p, 0] || GtQ[a, 0])

Rule 372

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[a^IntPart[p]*((a + b*x^n)^FracPart[p]/
(1 + b*(x^n/a))^FracPart[p]), Int[(c*x)^m*(1 + b*(x^n/a))^p, x], x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[
p, 0] &&  !(ILtQ[p, 0] || GtQ[a, 0])

Rubi steps \begin{align*} \text {integral}& = \left (\left (d^2-e^2 x^2\right )^p \left (1-\frac {e^2 x^2}{d^2}\right )^{-p}\right ) \int (g x)^m \left (1-\frac {e^2 x^2}{d^2}\right )^p \, dx \\ & = \frac {(g x)^{1+m} \left (d^2-e^2 x^2\right )^p \left (1-\frac {e^2 x^2}{d^2}\right )^{-p} \, _2F_1\left (\frac {1+m}{2},-p;\frac {3+m}{2};\frac {e^2 x^2}{d^2}\right )}{g (1+m)} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.07 (sec) , antiderivative size = 73, normalized size of antiderivative = 0.97 \[ \int (g x)^m \left (d^2-e^2 x^2\right )^p \, dx=\frac {x (g x)^m \left (d^2-e^2 x^2\right )^p \left (1-\frac {e^2 x^2}{d^2}\right )^{-p} \operatorname {Hypergeometric2F1}\left (\frac {1+m}{2},-p,1+\frac {1+m}{2},\frac {e^2 x^2}{d^2}\right )}{1+m} \]

[In]

Integrate[(g*x)^m*(d^2 - e^2*x^2)^p,x]

[Out]

(x*(g*x)^m*(d^2 - e^2*x^2)^p*Hypergeometric2F1[(1 + m)/2, -p, 1 + (1 + m)/2, (e^2*x^2)/d^2])/((1 + m)*(1 - (e^
2*x^2)/d^2)^p)

Maple [F]

\[\int \left (g x \right )^{m} \left (-e^{2} x^{2}+d^{2}\right )^{p}d x\]

[In]

int((g*x)^m*(-e^2*x^2+d^2)^p,x)

[Out]

int((g*x)^m*(-e^2*x^2+d^2)^p,x)

Fricas [F]

\[ \int (g x)^m \left (d^2-e^2 x^2\right )^p \, dx=\int { {\left (-e^{2} x^{2} + d^{2}\right )}^{p} \left (g x\right )^{m} \,d x } \]

[In]

integrate((g*x)^m*(-e^2*x^2+d^2)^p,x, algorithm="fricas")

[Out]

integral((-e^2*x^2 + d^2)^p*(g*x)^m, x)

Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 1.29 (sec) , antiderivative size = 61, normalized size of antiderivative = 0.81 \[ \int (g x)^m \left (d^2-e^2 x^2\right )^p \, dx=\frac {d^{2 p} g^{m} x^{m + 1} \Gamma \left (\frac {m}{2} + \frac {1}{2}\right ) {{}_{2}F_{1}\left (\begin {matrix} - p, \frac {m}{2} + \frac {1}{2} \\ \frac {m}{2} + \frac {3}{2} \end {matrix}\middle | {\frac {e^{2} x^{2} e^{2 i \pi }}{d^{2}}} \right )}}{2 \Gamma \left (\frac {m}{2} + \frac {3}{2}\right )} \]

[In]

integrate((g*x)**m*(-e**2*x**2+d**2)**p,x)

[Out]

d**(2*p)*g**m*x**(m + 1)*gamma(m/2 + 1/2)*hyper((-p, m/2 + 1/2), (m/2 + 3/2,), e**2*x**2*exp_polar(2*I*pi)/d**
2)/(2*gamma(m/2 + 3/2))

Maxima [F]

\[ \int (g x)^m \left (d^2-e^2 x^2\right )^p \, dx=\int { {\left (-e^{2} x^{2} + d^{2}\right )}^{p} \left (g x\right )^{m} \,d x } \]

[In]

integrate((g*x)^m*(-e^2*x^2+d^2)^p,x, algorithm="maxima")

[Out]

integrate((-e^2*x^2 + d^2)^p*(g*x)^m, x)

Giac [F]

\[ \int (g x)^m \left (d^2-e^2 x^2\right )^p \, dx=\int { {\left (-e^{2} x^{2} + d^{2}\right )}^{p} \left (g x\right )^{m} \,d x } \]

[In]

integrate((g*x)^m*(-e^2*x^2+d^2)^p,x, algorithm="giac")

[Out]

integrate((-e^2*x^2 + d^2)^p*(g*x)^m, x)

Mupad [F(-1)]

Timed out. \[ \int (g x)^m \left (d^2-e^2 x^2\right )^p \, dx=\int {\left (d^2-e^2\,x^2\right )}^p\,{\left (g\,x\right )}^m \,d x \]

[In]

int((d^2 - e^2*x^2)^p*(g*x)^m,x)

[Out]

int((d^2 - e^2*x^2)^p*(g*x)^m, x)